Motion Law Analysis and Structural Optimization of the Ejection Device of Tray Seeder
نویسندگان
چکیده
An ejection mechanism consisting four reset springs, an electromagnet and a seed disk was designed for tray seeder. The motion conditions of seeds in the seed disk were theoretical analyzed and intensity and height of seed ejection were calculated. The motions of the seeds and seed disk were multi-body dynamic simulated using Cosmos modules plug-in SolidWorks software package. The simulation results showed the consistence with the theoretical analysis.
منابع مشابه
Analysis of the Population Collision Process of Seeder Based on Linear Viscoelastic Model
According to the linear viscoelastic model, the population discrete elements under the vibration working condition of the seed tray of the seeder were assumed as rigid conditions to analyze the collision process. The dynamic characteristics among the population collision process for the vibration process of the seeder were analyzed by tracing the microcosmic motion of each seed. The following c...
متن کاملWave Motion and Stop-Bands in Pipes with Helical Characteristics Using Wave Finite Element Analysis
Pipes are widely used in many industrial and mechanical applications and devices. Although there are many different constructions according to the specific application and device, these can show helical pattern, such as spiral pipes, wire-reinforced pipes/shells, spring-suspension, and so on. Theoretical modelling of wave propagation provides a prediction about the dynamic behavior, and it is f...
متن کاملRobust Optimal Control of Flexible Spacecraft During Slewing Maneuvers
In this paper, slewing maneuver of a flexible spacecraft with large angle of rotation is considered and assuming structural frequency uncertainties a robust minimum-time optimal control law is developed. Considering typical bang-bang control commands with multiple symmetrical switches, a parameter optimization procedure is introduced to find the control forces/torques. The constrained minimizat...
متن کاملStable Gait Planning and Robustness Analysis of a Biped Robot with One Degree of Underactuation
In this paper, stability analysis of walking gaits and robustness analysis are developed for a five-link and four-actuator biped robot. Stability conditions are derived by studying unactuated dynamics and using the Poincaré map associated with periodic walking gaits. A stable gait is designed by an optimization process satisfying physical constraints and stability conditions. Also, considering...
متن کاملTOPOLOGY OPTIMIZATION OF 2D BUILDING FRAMES UNDER ARTIFICIAL EARTHQUAKE GROUND MOTIONS USING POLYGONAL FINITE ELEMENT METHOD
In this article, topology optimization of two-dimensional (2D) building frames subjected to seismic loading is performed using the polygonal finite element method. Artificial ground motion accelerograms compatible with the design response spectrum of ASCE 7-16 are generated for the response history dynamic analysis needed in the optimization. The mean compliance of structure is minimized as a t...
متن کامل